Cross-Domain Graph Anomaly Detection via Anomaly-Aware Contrastive Alignment

نویسندگان

چکیده

Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target using auxiliary, related source graphs with labelled and normal nodes. Although it presents a promising approach to address notoriously high false positive issue detection, little work has been done this line research. There are numerous domain adaptation methods literature, but is difficult adapt them for GAD due unknown distributions anomalies complex node relations embedded data. To end, we introduce novel approach, namely Anomaly-aware Contrastive alignmenT (ACT), GAD. ACT designed jointly optimise: (i) unsupervised contrastive learning representations graph, (ii) anomaly-aware one-class alignment that aligns these while enforcing significant deviation from graph. In doing so, effectively transfers anomaly-informed knowledge learn class on without any specification distributions. Extensive experiments eight CD-GAD settings demonstrate our achieves substantially improved performance over 10 state-of-the-art methods. Code available at https://github.com/QZ-WANG/ACT.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissimilarity Based Contrastive Divergence for Anomaly Detection

This paper describes training of a Restricted Boltzmann Machine(RBM) using dissimilarity-based contrastive divergence to obtain an anomaly detector. We go over the merits of the method over other approaches and describe the method’s usefulness to obtain a generative model.

متن کامل

Graph-based Image Anomaly Detection

RX Detector is recognized as the benchmark algorithm for image anomaly detection, however it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a highly dimensional covariance matrix and the inability to effectively include spatial awareness in its evaluation. In this work a novel graph-based solution to the ...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Cross-Domain Collaborative Anomaly Detection: So Far Yet So Close

Web applications have emerged as the primary means of access to vital and sensitive services such as online payment systems and databases storing personally identifiable information. Unfortunately, the need for ubiquitous and often anonymous access exposes web servers to adversaries. Indeed, network-borne zero-day attacks pose a critical and widespread threat to web servers that cannot be mitig...

متن کامل

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i4.25591